
SORTING BY SIGNED REVERSALS
PHILLIP COMPEAU

At the turn of the 20th Century, biologists surmised that new traits must be introduced
by chromosomal mutations. In 1921, Alfred Sturtevant examined the genetic linkage maps
from two species of fruit fly (Drosophila) and observed that an interval of genes located
on chromosome 3 had been inverted in one of the species. His discovery provided the first
substantial evidence of a specific mutation occurring at some point during the evolutionary
history of an entire species.

A decade later, Theophilus Painter suggested the investigation of polytene chromosomes
to analyze mutations directly. These chromosomes, found in cells taken from the salivary
glands of certain fruit flies, are made huge as a result of unchecked gene replication without
mitosis. When dyed, areas of a chromosome undergoing a greater amount of gene transcrip-
tion will appear lighter, dividing the gigantic polytene chromosomes into clear alternating
black and white bands of varying widths that biologists can view with a light microscope
(Fig. 1). Sturtevant worked alongside Theodosius Dobzhansky to compare banding pat-
terns from the polytene chromosomes of different fly species, and they noted chromosomal
segments in which segments of bands had clearly been inverted (Fig. 2).

A chromosomal segment inversion, or reversal, occurs when an interval of DNA coils into
a loop-de-loop and the endpoints of the interval trade bonds (Fig. 3). Reversals are now
known to be one of a variety of structural genomic mutations, most of which are very
harmful to the mutated cell, but some of which may equip the organism with a benefi-
cial trait that can be positively reinforced by the action of natural selection in further
generations.

If chromosomes C1 and C2 from two related species share (roughly) the same n genes, then
we may consider a model in which the two chromosomes have been separated solely as a
result of reversals. Therefore, we would like to calculate the minimum number of reversals
required to change C1 into C2 to provide a function representing evolutionary distance
between chromosomes. We call this minimum number of reversals the reversal distance
between C1 and C2, denoted d(C1, C2).

For the sake of simplicity, we will label the genes of C2 in order with 1, 2, . . . , n. We
then represent C1 by a signed permutation, or an ordering of {1, 2, . . . , n} indexing the
gene ordering of C1, and for which an element is positive (negative) if the gene it repre-
sents has the same (opposite) orientation in C2. For example, in Fig. 4a, we have that
C1 = (−4, 1, 3,−5, 2) (and of course C2 = (1, 2, 3, 4, 5)). A reversal applied to C1 simply
inverts the corresponding interval of indices and changes their sign; for instance, reversing
the interval formed of the middle three indices of C1 yields the new signed permutation
(−4, 5,−3,−1, 2) (Fig. 4b). Note that reversals of a single index are allowed.
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We may also represent the relationship between C1 and C2 graphically as follows. Assign
a “head” (h) and “tail” (t) to each gene, representing the gene’s endpoints. A gene’s
orientation is now determined by the ordering of its two ends, so that for instance −2 may
be encoded as (2h, 2t). Adding two null gene ends to represent the beginning and ending of
the chromosome, C1 may be represented as (0h, 4h, 4t, 1t, 1h, 3t, 3h, 5h, 5t, 2t, 2h, 6t). We
now form a graph whose vertices are defined by a linear embedding of the gene ends from
C1, and in which adjacent ends in C1 are joined by blue edges; join adjacent ends from
C2 by red edges in the same graph. Notice that the edges {1t, 1h}, {2t, 2h}, and so on
will be both red and blue; we may remove these edges, as they do not provide us with
any relevant information regarding the relationship between C1 and C2, which yields the
breakpoint graph of C1 and C2, denoted B(C1, C2) (Fig. 5a).

We may view the effect of a reversal on C1 by how it changes the breakpoint graph with
respect to C2. Notice two facts. Firstly, observe (Fig. 5b) that a reversal inverts the ver-
tices contained in the affected interval of C2 but only changes the overall graph structure
by rearranging two blue edges. Secondly, we will have transformed C1 into C2 when the
breakpoint graph consists of n+1 cycles of length 2. We are now ready to state our problem.

PROBLEM: For the signed permutation C1 on 500 elements given below (see “Problem
Instance”), calculate d(C1, C2), where C2 = (1, 2, . . . , 500). Also, provide a minimum
sequence of reversals that will yield this distance.
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Solution Checking

A user will submit a value d for the reversal distance as well as a (d + 1)× 500 matrix A.
The solution will be considered correct iff:

1. d = 495

2. The first row of A encodes the signed permutation representation of C1: [−371 −
119− 245 . . . 221].

3. The final row of A encodes the signed permutation representation of C2: [1 2 3 . . . 500].

4. For each j, 1 ≤ j ≤ d, the permutation in the (j + 1)th row represents some reversal
of the permutation in the jth row.

Draft Solution

The fact that any reversal applied to C1 rearranges two blue edges of B(C1, C2) implies
that the number of cycles in the breakpoint graph changes by at most 1 with any reversal
of C1, which immediately yields the following lemma.

Lemma 1. d(C1, C2) ≥ n + 1− c, where c is the number of cycles in B(C1, C2).

For our particular instance of C1, B(C1, C2) will have 6 cycles, implying that d(C1, C2) ≥
495. We can obtain an upper bound on d(C1, C2) of 2n−1 (i.e., 999) via a greedy algorithm
that inductively places the largest element at the end of the current permutation and then
flips it if necessary. The lower bound of Lemma ?? seems to be more realistic, and so we
may wonder if it is in fact tight. Thus, we would like to devise an algorithm that always
“splits” a cycle so as to increase the total number of cycles in the breakpoint graph by
1; even better, we would like to convert a (2m + 2)-cycle (m ≥ 1) into a 2m-cycle and a
new 2-cycle at each step. Note that 2-cycles correspond precisely to blue edges of the form
{kh, (k + 1)t} in B(C1, C2).

We can create a new 2-cycle via a reversal iff some elements k and k+1 in C2 have opposite
signs, or equivalently iff in B(C1, C2), both kh and (k + 1)t (always joined by a red edge)
appear on the same side of blue edges {kh, x} and {(k + 1)t, y}. This scenario occurs in
turn iff the number of vertices separating kh and (k + 1)t is odd. In this case, we call
{kh, (k + 1)t} a good edge (or good pair) and the reversal that replaces blue edges {kh, x}
and {(k + 1)t, y} with blue edges {kh, (k + 1)t} and {x, y} a good reversal.

Define the score of a reversal as the number of good pairs resulting from that reversal, and
define a reversal to be optimal if it is a good reversal having maximum score over all good
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reversals. This definition implies the following heuristic for calculating reversal distance:

Heuristic 2. At each step, select an optimal reversal.

Though far from obvious, it turns out that this heuristic is exact for almost every signed
permutation as n → ∞; in particular, it can be applied to calculate d(C1, C2) along with
a minimum collection of reversals for our given instance. Though it is not necessary for
the solution of this problem, in what follows we will illustrate why this heuristic is often
exact.

Form a new graph called the interleaving graph of C1 and C2 (denoted I(C1, C2)), whose
vertices are the red edges of B(C1, C2), and for which two vertices v, w are joined by an edge
if the edges corresponding to v and w cross in B(C1, C2). This crossing occurs precisely
when the intervals between those red edges intersect without inclusion. Predictably, we will
call a vertex of I(C1, C2) good if it encodes a good edge from B(C1, C2) and bad otherwise.
Good vertices can be determined directly from the interleaving graph: the fact that the
number of vertices separating a good pair in B(C1, C2) must be odd implies that a vertex
of I(C1, C2) is good iff its degree is odd.

In [1], Bergeron noted that applying the (good) reversal encoded by a good vertex v acts on
the interleaving graph by complementing the subgraph induced by v. Thus v will become
isolated, and by a parity argument, each vertex incident to v will change from good to bad
or vice-versa. Vertices not originally incident to v will of course have the same degree in
the new interleaving graph. This proves the following lemma.

Lemma 3. The score of the reversal encoded by a good vertex v is:

T + b(v)− g(v)− 1

where T is the total number of good vertices in I(C1, C2), b(v) is the number of bad vertices
adjacent to v, and g(v) is the number of good vertices adjacent to v.

We now have an easily calculable formula for the score of a good reversal. For that mat-
ter, it will give us our desired result. Define a component of I(C1, C2) containing at least
two vertices to be good if it contains a good vertex and bad otherwise; because reversals
corresponding to good vertices only influence the interleaving graph locally, our heuristic
will not work if we create any bad components. The following result, which can be proven
relatively quickly by contradiction using Lemma 3, demonstrates why optimal reversals are
so important.

Theorem 4. An optimal reversal does not create new bad components in the interleaving
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graph.

Thus, as long as I(C1, C2) does not contain any bad components to begin with, we will
ensure that our heuristic is exact. It turns out that most random signed permutations do
not contain bad components; it can easily be confirmed that this is the case for our chosen
instance as well.

Additional Comments

A student could guess the correct distance from the lower bound, which is why we also
demand the matrix component of the solution. More importantly, we reiterate that a
heuristic will solve this problem. Using a heuristic seems to be acceptable, as the heuristic
is nontrivial, exact in the majority of cases, and requires a reasonable amount of insight;
for that matter, heuristics are so fundamental to bioinformatics (and computer science
in general) that it would be both difficult and imprudent not to include them in this
project.

Two objections are immediately relevant. First, a student could randomly select a good
reversal that is not necessarily optimal at each step (or even just choose a random reversal
increasing the number of cycles in the breakpoint graph) and get lucky enough to never
create a bad component. We do not see any way in avoiding this contingency, and to alle-
viate it we propose suggesting further resources to students submitting correct responses.
Second, a student could attempt to produce an exact algorithm that works on all possible
datasets, which would require the student to recreate the expansive work of Hannenhalli
and Pevzner in [2], which took a decade to be presented somewhat concisely in [1]. We have
tried to avoid the possibility of a student getting bogged down in generality by providing
the hint at the end of the problem statement urging users not to solve the problem for all
possible inputs.
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Fig.	  1:	  Chromosome	  staining	  reveals	  banding	  patterns	  of	  polytene	  chromosomes	  of	  
Drosophila.	  	  Reproduced	  from	  the	  work	  of	  Dobzhansky	  and	  Sturtevant	  (“Inversions	  
in	  the	  Chromosomes	  of	  Drosophila	  obscura,”	  Genetics,	  1938).	  
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Fig.	  2:	  	  A	  simplified	  visualization	  of	  how	  chromosome	  inversions	  may	  be	  inferred	  
from	  banding	  patterns.	  	  The	  bottom	  chromosome	  may	  be	  produced	  from	  the	  top	  
chromosome	  by	  inverting	  the	  detached	  interval.	  	  Dobzhansky	  and	  Sturtevant	  
noticed	  this	  fact	  by	  comparing	  the	  widths	  of	  different	  bands;	  our	  simplified	  example	  
shows	  how	  9	  bands	  (labeled	  A-‐I)	  have	  been	  inverted.	  
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Fig.	  3:	  	  Simple	  illustration	  of	  how	  a	  reversal	  may	  occur	  when	  a	  chromosome	  
becomes	  coiled	  on	  itself	  and	  forms	  new	  bonds.	  	  Notice	  that	  a	  and	  b	  were	  adjacent	  in	  
the	  original	  chromosome,	  as	  were	  c	  and	  d,	  and	  that	  the	  reversal	  has	  created	  new	  
adjacencies	  a	  and	  c	  as	  well	  as	  b	  and	  d.	  
	  
	  
	  
	  
	  
	  
	  
	  

	  
	  
	  
	  
Fig.	  4:	  	  Two	  simplified	  hypothetical	  chromosomes	  C1	  (top)	  and	  C2	  (bottom)	  
containing	  the	  same	  genes.	  	  We	  may	  number	  the	  	  genes	  of	  C2	  in	  order,	  which	  yields	  
the	  signed	  permutation	  (1,	  2,	  3,	  4,	  5);	  the	  gene	  ordering	  of	  C1	  therefore	  implies	  the	  
signed	  permutation	  (-‐4,	  1,	  3,	  -‐5,	  2).	  
	   	  

a b c d

a
bc

d

a
bc

d

1 2 3 4 5

3-4 1 -5 2



	  
(a)	  

	  
	  
(b)	  

	  
	  
Fig.	  5:	  	  (a)	  The	  breakpoint	  graph	  of	  chromosomes	  C1	  and	  C2	  from	  Fig.	  4.	  	  (b)	  
Applying	  a	  reversal	  on	  the	  interval	  containing	  the	  middle	  three	  indices	  of	  C2	  gives	  a	  
new	  chromosome	  whose	  breakpoint	  graph	  with	  C1	  is	  depicted.	  	  Note	  that	  the	  only	  
change	  in	  the	  edges	  is	  that	  blue	  edges	  {4t,	  1t}	  and	  {5t,	  2t}	  have	  been	  replaced	  by	  {4t,	  
5t}	  and	  {1t,	  2t}.	  
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