
SORTING BY SIGNED REVERSALS
PHILLIP COMPEAU

At the turn of the 20th Century, biologists surmised that new traits must be introduced
by chromosomal mutations. In 1921, Alfred Sturtevant examined the genetic linkage maps
from two species of fruit fly (Drosophila) and observed that an interval of genes located
on chromosome 3 had been inverted in one of the species. His discovery provided the first
substantial evidence of a specific mutation occurring at some point during the evolutionary
history of an entire species.

A decade later, Theophilus Painter suggested the investigation of polytene chromosomes
to analyze mutations directly. These chromosomes, found in cells taken from the salivary
glands of certain fruit flies, are made huge as a result of unchecked gene replication without
mitosis. When dyed, areas of a chromosome undergoing a greater amount of gene transcrip-
tion will appear lighter, dividing the gigantic polytene chromosomes into clear alternating
black and white bands of varying widths that biologists can view with a light microscope
(Fig. 1). Sturtevant worked alongside Theodosius Dobzhansky to compare banding pat-
terns from the polytene chromosomes of different fly species, and they noted chromosomal
segments in which segments of bands had clearly been inverted (Fig. 2).

A chromosomal segment inversion, or reversal, occurs when an interval of DNA coils into
a loop-de-loop and the endpoints of the interval trade bonds (Fig. 3). Reversals are now
known to be one of a variety of structural genomic mutations, most of which are very
harmful to the mutated cell, but some of which may equip the organism with a benefi-
cial trait that can be positively reinforced by the action of natural selection in further
generations.

If chromosomes C1 and C2 from two related species share (roughly) the same n genes, then
we may consider a model in which the two chromosomes have been separated solely as a
result of reversals. Therefore, we would like to calculate the minimum number of reversals
required to change C1 into C2 to provide a function representing evolutionary distance
between chromosomes. We call this minimum number of reversals the reversal distance
between C1 and C2, denoted d(C1, C2).

For the sake of simplicity, we will label the genes of C2 in order with 1, 2, . . . , n. We
then represent C1 by a signed permutation, or an ordering of {1, 2, . . . , n} indexing the
gene ordering of C1, and for which an element is positive (negative) if the gene it repre-
sents has the same (opposite) orientation in C2. For example, in Fig. 4a, we have that
C1 = (−4, 1, 3,−5, 2) (and of course C2 = (1, 2, 3, 4, 5)). A reversal applied to C1 simply
inverts the corresponding interval of indices and changes their sign; for instance, reversing
the interval formed of the middle three indices of C1 yields the new signed permutation
(−4, 5,−3,−1, 2) (Fig. 4b). Note that reversals of a single index are allowed.
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We may also represent the relationship between C1 and C2 graphically as follows. Assign
a “head” (h) and “tail” (t) to each gene, representing the gene’s endpoints. A gene’s
orientation is now determined by the ordering of its two ends, so that for instance −2 may
be encoded as (2h, 2t). Adding two null gene ends to represent the beginning and ending of
the chromosome, C1 may be represented as (0h, 4h, 4t, 1t, 1h, 3t, 3h, 5h, 5t, 2t, 2h, 6t). We
now form a graph whose vertices are defined by a linear embedding of the gene ends from
C1, and in which adjacent ends in C1 are joined by blue edges; join adjacent ends from
C2 by red edges in the same graph. Notice that the edges {1t, 1h}, {2t, 2h}, and so on
will be both red and blue; we may remove these edges, as they do not provide us with
any relevant information regarding the relationship between C1 and C2, which yields the
breakpoint graph of C1 and C2, denoted B(C1, C2) (Fig. 5a).

We may view the effect of a reversal on C1 by how it changes the breakpoint graph with
respect to C2. Notice two facts. Firstly, observe (Fig. 5b) that a reversal inverts the ver-
tices contained in the affected interval of C2 but only changes the overall graph structure
by rearranging two blue edges. Secondly, we will have transformed C1 into C2 when the
breakpoint graph consists of n+1 cycles of length 2. We are now ready to state our problem.

PROBLEM: For the signed permutation C1 on 500 elements given below (see “Problem
Instance”), calculate d(C1, C2), where C2 = (1, 2, . . . , 500). Also, provide a minimum
sequence of reversals that will yield this distance.

2



Solution Checking

A user will submit a value d for the reversal distance as well as a (d + 1)× 500 matrix A.
The solution will be considered correct iff:

1. d = 495

2. The first row of A encodes the signed permutation representation of C1: [−371 −
119− 245 . . . 221].

3. The final row of A encodes the signed permutation representation of C2: [1 2 3 . . . 500].

4. For each j, 1 ≤ j ≤ d, the permutation in the (j + 1)th row represents some reversal
of the permutation in the jth row.

Draft Solution

The fact that any reversal applied to C1 rearranges two blue edges of B(C1, C2) implies
that the number of cycles in the breakpoint graph changes by at most 1 with any reversal
of C1, which immediately yields the following lemma.

Lemma 1. d(C1, C2) ≥ n + 1− c, where c is the number of cycles in B(C1, C2).

For our particular instance of C1, B(C1, C2) will have 6 cycles, implying that d(C1, C2) ≥
495. We can obtain an upper bound on d(C1, C2) of 2n−1 (i.e., 999) via a greedy algorithm
that inductively places the largest element at the end of the current permutation and then
flips it if necessary. The lower bound of Lemma ?? seems to be more realistic, and so we
may wonder if it is in fact tight. Thus, we would like to devise an algorithm that always
“splits” a cycle so as to increase the total number of cycles in the breakpoint graph by
1; even better, we would like to convert a (2m + 2)-cycle (m ≥ 1) into a 2m-cycle and a
new 2-cycle at each step. Note that 2-cycles correspond precisely to blue edges of the form
{kh, (k + 1)t} in B(C1, C2).

We can create a new 2-cycle via a reversal iff some elements k and k+1 in C2 have opposite
signs, or equivalently iff in B(C1, C2), both kh and (k + 1)t (always joined by a red edge)
appear on the same side of blue edges {kh, x} and {(k + 1)t, y}. This scenario occurs in
turn iff the number of vertices separating kh and (k + 1)t is odd. In this case, we call
{kh, (k + 1)t} a good edge (or good pair) and the reversal that replaces blue edges {kh, x}
and {(k + 1)t, y} with blue edges {kh, (k + 1)t} and {x, y} a good reversal.

Define the score of a reversal as the number of good pairs resulting from that reversal, and
define a reversal to be optimal if it is a good reversal having maximum score over all good
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reversals. This definition implies the following heuristic for calculating reversal distance:

Heuristic 2. At each step, select an optimal reversal.

Though far from obvious, it turns out that this heuristic is exact for almost every signed
permutation as n → ∞; in particular, it can be applied to calculate d(C1, C2) along with
a minimum collection of reversals for our given instance. Though it is not necessary for
the solution of this problem, in what follows we will illustrate why this heuristic is often
exact.

Form a new graph called the interleaving graph of C1 and C2 (denoted I(C1, C2)), whose
vertices are the red edges of B(C1, C2), and for which two vertices v, w are joined by an edge
if the edges corresponding to v and w cross in B(C1, C2). This crossing occurs precisely
when the intervals between those red edges intersect without inclusion. Predictably, we will
call a vertex of I(C1, C2) good if it encodes a good edge from B(C1, C2) and bad otherwise.
Good vertices can be determined directly from the interleaving graph: the fact that the
number of vertices separating a good pair in B(C1, C2) must be odd implies that a vertex
of I(C1, C2) is good iff its degree is odd.

In [1], Bergeron noted that applying the (good) reversal encoded by a good vertex v acts on
the interleaving graph by complementing the subgraph induced by v. Thus v will become
isolated, and by a parity argument, each vertex incident to v will change from good to bad
or vice-versa. Vertices not originally incident to v will of course have the same degree in
the new interleaving graph. This proves the following lemma.

Lemma 3. The score of the reversal encoded by a good vertex v is:

T + b(v)− g(v)− 1

where T is the total number of good vertices in I(C1, C2), b(v) is the number of bad vertices
adjacent to v, and g(v) is the number of good vertices adjacent to v.

We now have an easily calculable formula for the score of a good reversal. For that mat-
ter, it will give us our desired result. Define a component of I(C1, C2) containing at least
two vertices to be good if it contains a good vertex and bad otherwise; because reversals
corresponding to good vertices only influence the interleaving graph locally, our heuristic
will not work if we create any bad components. The following result, which can be proven
relatively quickly by contradiction using Lemma 3, demonstrates why optimal reversals are
so important.

Theorem 4. An optimal reversal does not create new bad components in the interleaving
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graph.

Thus, as long as I(C1, C2) does not contain any bad components to begin with, we will
ensure that our heuristic is exact. It turns out that most random signed permutations do
not contain bad components; it can easily be confirmed that this is the case for our chosen
instance as well.

Additional Comments

A student could guess the correct distance from the lower bound, which is why we also
demand the matrix component of the solution. More importantly, we reiterate that a
heuristic will solve this problem. Using a heuristic seems to be acceptable, as the heuristic
is nontrivial, exact in the majority of cases, and requires a reasonable amount of insight;
for that matter, heuristics are so fundamental to bioinformatics (and computer science
in general) that it would be both difficult and imprudent not to include them in this
project.

Two objections are immediately relevant. First, a student could randomly select a good
reversal that is not necessarily optimal at each step (or even just choose a random reversal
increasing the number of cycles in the breakpoint graph) and get lucky enough to never
create a bad component. We do not see any way in avoiding this contingency, and to alle-
viate it we propose suggesting further resources to students submitting correct responses.
Second, a student could attempt to produce an exact algorithm that works on all possible
datasets, which would require the student to recreate the expansive work of Hannenhalli
and Pevzner in [2], which took a decade to be presented somewhat concisely in [1]. We have
tried to avoid the possibility of a student getting bogged down in generality by providing
the hint at the end of the problem statement urging users not to solve the problem for all
possible inputs.
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Fig.	
  1:	
  Chromosome	
  staining	
  reveals	
  banding	
  patterns	
  of	
  polytene	
  chromosomes	
  of	
  
Drosophila.	
  	
  Reproduced	
  from	
  the	
  work	
  of	
  Dobzhansky	
  and	
  Sturtevant	
  (“Inversions	
  
in	
  the	
  Chromosomes	
  of	
  Drosophila	
  obscura,”	
  Genetics,	
  1938).	
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Fig.	
  2:	
  	
  A	
  simplified	
  visualization	
  of	
  how	
  chromosome	
  inversions	
  may	
  be	
  inferred	
  
from	
  banding	
  patterns.	
  	
  The	
  bottom	
  chromosome	
  may	
  be	
  produced	
  from	
  the	
  top	
  
chromosome	
  by	
  inverting	
  the	
  detached	
  interval.	
  	
  Dobzhansky	
  and	
  Sturtevant	
  
noticed	
  this	
  fact	
  by	
  comparing	
  the	
  widths	
  of	
  different	
  bands;	
  our	
  simplified	
  example	
  
shows	
  how	
  9	
  bands	
  (labeled	
  A-­‐I)	
  have	
  been	
  inverted.	
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Fig.	
  3:	
  	
  Simple	
  illustration	
  of	
  how	
  a	
  reversal	
  may	
  occur	
  when	
  a	
  chromosome	
  
becomes	
  coiled	
  on	
  itself	
  and	
  forms	
  new	
  bonds.	
  	
  Notice	
  that	
  a	
  and	
  b	
  were	
  adjacent	
  in	
  
the	
  original	
  chromosome,	
  as	
  were	
  c	
  and	
  d,	
  and	
  that	
  the	
  reversal	
  has	
  created	
  new	
  
adjacencies	
  a	
  and	
  c	
  as	
  well	
  as	
  b	
  and	
  d.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  
Fig.	
  4:	
  	
  Two	
  simplified	
  hypothetical	
  chromosomes	
  C1	
  (top)	
  and	
  C2	
  (bottom)	
  
containing	
  the	
  same	
  genes.	
  	
  We	
  may	
  number	
  the	
  	
  genes	
  of	
  C2	
  in	
  order,	
  which	
  yields	
  
the	
  signed	
  permutation	
  (1,	
  2,	
  3,	
  4,	
  5);	
  the	
  gene	
  ordering	
  of	
  C1	
  therefore	
  implies	
  the	
  
signed	
  permutation	
  (-­‐4,	
  1,	
  3,	
  -­‐5,	
  2).	
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Fig.	
  5:	
  	
  (a)	
  The	
  breakpoint	
  graph	
  of	
  chromosomes	
  C1	
  and	
  C2	
  from	
  Fig.	
  4.	
  	
  (b)	
  
Applying	
  a	
  reversal	
  on	
  the	
  interval	
  containing	
  the	
  middle	
  three	
  indices	
  of	
  C2	
  gives	
  a	
  
new	
  chromosome	
  whose	
  breakpoint	
  graph	
  with	
  C1	
  is	
  depicted.	
  	
  Note	
  that	
  the	
  only	
  
change	
  in	
  the	
  edges	
  is	
  that	
  blue	
  edges	
  {4t,	
  1t}	
  and	
  {5t,	
  2t}	
  have	
  been	
  replaced	
  by	
  {4t,	
  
5t}	
  and	
  {1t,	
  2t}.	
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